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Ter Haar has shown that simple kinetic theory arguments based on Drude s earl\ work
can be used to derive approximate expressions for the transport properties of semiconductors
and metals. Using ter Haar's ideas, this paper derives an expression for the ambipolar diffusion
contribution to the electron thermal conductivity. In the first part of the derivation a general
expression is obtained for the heat conductivity, using the concepts of the kinetic theory of
gases and assuming an electron mean free path. The expressicn obtained is in all respects similar
to the diffusion equation from the kinetic theory of gases, except for a term taking the effect
of an electric field into consideration. In the second part of the derivation the concepts of band
theory and semiconductor statistics are introduced in the kinetic theory equations. The final ex-
pression for the ambipolar contribution, using Boltzmann statistics agrees, except for numeri-
cal constants, with the exact form derived from considerations based upon the Boltzmann
transport equation. The application of Fermi-Dirac statistics to the problem vields no ambi-
polar diffusion term as a correction to the conductivity, if terms higher than the first order of
the reciprocal of the reduced Fermi level are neglected. This is in agreement with the exact re-
sults based upon the Boltzmann transport equation from which it is seen that the ambipolar
term contains only second and higher order terms of the reciprocal of the reduced Fermi-level,(v*
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™F The mathematical apparatud uired to

HE rapid development of semiconducting

materials in recent years and their applica-
tion to energy conversion devices has stimulated
much interest in the transport processes in
solids. Solid-state energy conversion devices are,
like all heat energies, limited in their efficiency
by the Carnot efficiency, and in addition by the
transport properties of the solid. The heat
conductivity plays a vital part in this process
since it limits the amount of heat available for
conversion to electrical energy by determining
the amount of heat originally absorbed from a
heat source and the amount ultimately rejected
to a heat sink, and thereby lost. Analysis of the
heat condugtion process by formal transport
theory (assumption of relaxation time), in the
region of mixed conduction, shows that the heat
conductivity is not simply the sum of the electron
and hole conductivities. An additional term
appears, which is proportional to the carrier
mobilities and a quadratic term involving the
ratio of the band-gap energy AE to the average
kinetic energy, and inversely proportional to
the sum of the hole and electron mobility. This
term contribution to the heat
conductivity which is especially marked when
the band-gap AE is much larger than the
average energy of the carriers.

represents a

arrive at the expression for the heat conductivity
and the ambipolar diffusion term is considerable
and it is instructive to see just how far one can
go using a very simple model for the transport
processes in a solid. Ter Haar! has shown that
using simple kinetic theory arguments, first-order
approximations can be obtained for the electrical
conductivity, heat conductivity, thermelectric
power, etc., of metals and semiconductors. In
fact the basic cquations are identical to the
cquations of thermal conductivity, viscosity, and
diffusion derived from the kinetic theory of
gases. Although the model is very crude indeed,
it vields first-order terms ceven for the compli-
cated transport phenomena which occur in the
presence of temperature and density gradients.
Ter Haar makes a number of simplifying assump-
tions in his calculations which upon more careful
examination can be shown to restrict the full
power his approach unnecessarily. For
example, ter Haar! calculates the absolute
thermoelectric power of a semiconductor and
gets the dominant term proportional to the
average kinetic energy of the carriers—more
careful analysis turns up the missing term
proportional to the Fermi encrgy “transported

1D, ter Haar, Physica 22, 61 (19536),
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by the carriers.? We therefore thought it worth-
while to take another look at the problem of the
ambipolar contribution to heat conduction in
intrinsic semiconductors. Ter Haar’s calculation
of the ambipolar effect yields the relatively
large term proportional to (k/e)2(|AE|/kT).
But careful recalculation of the problem gives an
expression which contains in addition to the term
given by ter Haar, contributions proportional to
(k/e)?(| AE|/ET) and to the constant (k/e)%.
(This constant is in effect equal to twice the
Lorentz number?) This accounts for all the
terms found by the usual solution of the transport
equations except for numerical constants. The
same analysis is extended to a degenerate gas.
The case of ambipolar diffusion in a semimetal
is considered, and the results of calculations
are given.

The analysis presented by ter Haar and
elaborated here is, of course, an extension of the
very old but nonetheless still interesting Drude
theory  of metalst The analysis is neither
intended nor pretends to replace results derived
from a solution of the Boltzmann transport
equation, but attempts to show that a very
simple physical model does remarkably well in
reproducing some result of solid-state theory,

We proceed with the calculation of the
electric and thermal current densitics assuming
the semiconductor or semimetal to be a gas of
electrons and holes of density #, and n., respec-
tively. In the calculations all pretense of being
able to calculate numerical factors is dropped
and we henceforth neglect them.

II. ELECTRIC AND HEAT CURRENT DENSITY
1. General Formulation

Consider particles passing through an imagin-
ary plane at x in the positive x direction. The
plane is perpendicular to the axis. If o, is the
average velocity of the particles at the plane, the
velocity v, (x—X,) of the particles having suffered
a collision at distance A\, from the plane will be
that appropriate to the last collision, i.e.,

F. E. Geiger, NASA TN D-1176, May 1962 (un-
published).

®In our approximation, where no attempt is made to
calculate numerical constants, twice the Lorentz number
comes out to be just (k/e).?

¢ P. Drude, Ann. Physik (4), 1, 566 (1900); and (4), 3,
369 (1900).
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vi{x—X\;) =v,—A(9v:1/9x).5 If the particles are
subject to an electric field &, the velocity of the
particles increases by u;8, over the mean free
path Ay, and the average velocity of the particles
crossing the plane in the positive x direction is'

Uiy =01 (0= Np) Fur1 E. =01~ (00,/9x) 1 6., (1)

|y
where uy=e\1/m v, is the mobility of the carrier
of charge e;. The average concentration corre-
sponding to the last collision before the particle
passes through the plane, in analogy to our
preceding arguments, is

n_1=n1(x—>\1)=n1—)\1(6n1/6x). (2)

The negative particle current density in the
positive x direction can now be written, with
the help of Egs. 1 and 2:

~7.a:+”=€17’l1J)1+- (3)

The complete expression for the current density
contributed by both positive and negative
carricrs (i.c., holes and clectrons) flowing in both
the positive and negative x directions is

Je= (’1[:7L1_7Jl+‘—n1+1}14—]+@z[7l3~7}3y—nz,‘ﬂz—], (4)

where the subscript 2 refers to the positive
carriers or holes. This cquation can be reduced
with the help of the explicit expressions for #;_,
n14, cte., and we get

jx=e[ 82 (nipy— nous)

() ()
)]

with ;= —e,=e¢. This equation is interesting in
a number of ways. Except for the mobility terms,
it is identical with the expression for the rate of
mutual diffusion of two ideal gases.® Note that
the equation contains both the Einstein-diffusion

and the thermal-diffusion coefficients. This
becomes clear if we write
exv{an/ox) = (e /mv)mv*(dn/dx). (6)

5 The symbols and conventions are those used by

ter Haar.
8 R, Fuerth, Proc. Roy. Soc. A 179, 461 (1942).
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For a classical gas this becomes wkI (dn,9x)
=eD(dn/dx), where D is the Einstein-diffusion

coefficient.” Similarly transforming en)(d2,9x)
we get
+

ov 2N (m2/2)
enk(—) =n (—-—) ( 8——)
- NOX my dax

(mv2/2) o1 aT

(D))

aT ax ox

d

= enD‘(—[>, (7)
x

where Dt is the thermal diffusion coefficient.”
Equation 5 may be transformed with the use of
Egs. 6 and 7:

jz -_—(’gz(nl}u— 712#2) _[nl#l(a(’_"%;l;> ’/ax)
e 5)/4)]
on, an,
—[m<m1ve>(f)+uz(mzvzz)(—)]. ®)
dx ox

It should be emphasized again that Eq. 8 is an
approximate equation for the current. Hf we
designate the kinetic energies of the particles by
e = (m,%/2) and ex= (m4w:?/2), Eq. 8 becomes

: 661 aéz
Je=e& (mipy—nops) — [nuul(-—>+nz#:< )]
ax dx
Bnl ang
—Z[Mﬁl(——)‘ﬂlzfz(—‘)], (9)
dx ix

or, introducing the temperature gradient 7 /dx,

. 661 aéz
J= =8 (nu— Mapa) — “:nlﬂl<—>+n2ﬂz<—“>]
oT oT
6n1 anz 6T
+2[#161<—>+#262( >]}<——“> (10)
oT aT ax

70. Madelung, ‘“Halbleiter” in Handbuch der Physik,
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol.
20, p. 86.
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The preceding discussion of the equation for the
current density allows us now to write down the
formal equation for the total heat-current
density, W,,

Wo=[n_-Eiv,—nFEyv_]
+na Es vay—mo Eoyee ], (11)

where E. =FE,£X;(dE;/dx), E; being the total
average energy of the particle, i.e., the sum of
the kinetic and ‘“‘potential”’ energy, and #n.y,
and v,y are as before. If we now substitute the
expressions for n;, v, and E,, in Eq. 11, we get,

Iy oL,
]‘er = [ — El)\ 1‘1’](!) —A 11 17’,1<_7>
dx ax
6‘1'1
)
dx
6n1 8E1
—!—[n 1E1M1 - Xfm(-—)(———)] 5;
ax ax

+4identical terms except with subscript

“2" replacing the subscript “1”". (12)

Using Eqs. 6 and 7, and neglecting terms such
as (dn/9x) (OE/dx) and terms of higher orders
in 977 /3x, we write,

6n1 (')E,
We= cl“l[ - ZEuulex(—‘) —2n mm(—»)
aT aT
661 GT
- nl#lEl(_)](——> + [n)[l 1E1]81
aT dx
6n2 al
el Y
aT dx

+[n2E2[l2] 81. (13)

The charge flow caused by the temperature and
density gradients sets up an electric field &,
which reduces the current flow to zero, when
equilibrium is reached. The magnitude of this
field may be obtained {rom Eq. 10 by setting the
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current density 7, equal to zero and solving for

the field &,

e[l
el o

where ¢, the clectrical conductivity, is given by,3

(15)

The heat conductivity is defined for the equi-
l.brium condition j,=0, and Eq. 14 gives the
appropriate electric field &.. Substituting Eq.
14 into Eq. 13, we find for the heat current
density W,

3IN!
W’za<—>

dx

6n1
=[2E1M17l2#261<—i>_2"12#12€1< )

al
0t

+2n1u1neuzel<67>+n1u1n>u)1'< >

+[identical expression for holes, except

0201‘1‘0;:0(”1#1—”2#2)-

des
- ipitopeFiy < >+2n1#1M‘F1€’<
oT

all subscripts interchanged]. (16)

The final reduction of Eq. 16 is quite tedious,
and henceforth only the most important steps in
the derivation of the heat conductivity is given.
We consider now the cases of classical and
Fermi—Dirac statistics.

2. The Classical Case

If we first consider the case of an intrinsic
semiconductor of bandgap |AE!, the total
energy of the electrons is? E;=¢;, and that of
the holes Eo={AE|+e. We make use of the
equipartition thcorem: that is, the average
kinetic encrgy of the electrons equals that of the

8 This notation differs from the accepted one in the
definition of mobilities, but is used here to facilitate study
and comparison with ter Haar’s paper.

®In the calculation it makes no difference whether we
add the “ionization energy’’ |AE| to € or e
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holes, or e;=¢;, which for classical statistics!®
equals (k7), and we get from Eq. 16,

a1\
I‘Vza<—-> N
ax
anl
=[2H1712Mzk27‘2<*—>—27112#12}82'1‘ —
oT

6712
FAnipnapk? T 201 papak? 12<_h>:|
o7

+[lidentical expression for holes, except

all subscripts interchanged ]

no
+2|:7’L1y,1u lAF k1< >+n1mnou>lAE[k

[ 71
+/.117lg}l,2 [ AE | k]‘(‘—)]
a7l

The well-known cexpression for the carrier con-
centration in the conduction and valence band
of an intrinsic nondegenerate semiconductor,!
ny=n,=22wmk [ /h2)le CAEVRT =y =m,
allows us readily to calculate the gradients
(8n1/07), and (dns/d7) (again omitting numer-

ical factors),
|AE] )
kT2 )

Gnl 1
()i

or T
(o)

ol T kI?

Using Eq. 17, we may now write the expression

for the heat current density (this time omitting
all numerical factors) :

a —1
W(J_)
ax

= —kQT{ [n12u1?+n22#22 —nlmne#ﬂ] — Nl
X AE& 1 AE)| )2}
(RT)?

(17)

and

— R 2y

AE]

'-k?]‘e“?’ [‘71+02:|2+0102|:1+‘——_]~}, (18)
kT

10 The factor (2) has been omitted in the expression for
the average kinetic energy since no attempt is made to
calculate numerical constants.

IR, A. Smith, Semiconductors (Cambridge University
Press, Cambridge, England, 1959), p. 78.
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where ¢, and ¢ are the clectron and hole conduc-
tivities, respectively, as defined above. Equation
18 gives all the essential terms in the expression
for the heat current density of an intrinsic
n.ondegenerate semiconductor which are obtained
by the solution of the Boltzmann transport
@guation. See, for example, the exact expression
obtained by Madelung,? also compare with
exact results obtained by Price'® by considering
diffusion down a temperature gradient in a

semiconductor.

3. Degenerate Case

Let us now consider a semiconductor with
energy gap AE but this time make the assump-
tion that both electrons and holes are highly
degenerate.!* For this case then the electrons
follow Fermi-Dirac statistics with the distribu-
tion function

where E is the electron energy and E; the Fermi
energy. The hole distribution function is then
1— fo(E,E;) = for(E',E;"), where we have used
the energy coordinate transformation E= —AE
—E', E;= — AE—E/ such that

fot=[(exp(E'—E/)/RT) 1711216

Positive hole energics are measured down from
the top of the conduction band (E'=0), and
E; is the Fermi energy of the holes. 1t is now
easilv seen that the condition for the degeneracy
of the electrons, i.e., (E;/kT)>1, and that of
the holes, (E//kRT)>>1 cannot simultaneously be
met if the relation E;=—AE—E/ is to be
satisfied.’” It can only be satisfied if AE is
negative, i.e., — | AE|. Physically this simply
means that the conduction and valence bands
overlap by the amount [AE!. In the classical
case it was easy enough to find expressions for
the average energy of the carriers, and their
equilibrium concentrations. Matters are no

18 See Ref. 7, p. 88.

13 P J. Price, Phil. Mag. 46, 1252 (1955).

4 The assumption of high degeneracy simplifies cal-
culations.

15 See Ref. 11, p. 168.

1A, H. Wilson, The Theory of Metals, (Cambridge
University Press, Cambridge, England, 1953), 2nd ed.
p. 211, Eq. 8.511.1, and, p. 233.

17 We are indebted to J. Marburger for raising and
clarifying this point.
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longer so simple for degenerate carriers, expres-
sions for ¢, n, and (dn/d717") cannot be obtained
in a closed form. The expressions for the average
energy, carrier density, etc., must now be
obtained in power series expansions of the
reduced Fermi energy. In order to reduce the
problem to manageable proportions and to
obtain a tractable expression for the Fermi
energy, we assume cqual hole and electron
masses. This results in a number of simplifica-
tions: E;=FE;=1AE|/2, (3n,/8T)=(dny/87),
and more importantly, the average kinetic
energy of the holes may be set equal to that of
the electrons, even though the carriers are
degenerate. With these simplifying assumptions
and the condition of overlapping bands, we can
write Eq. 16 in the form,

a7\ Jde
IV,,JT(-*“) = —6‘21 (01+02)2€(“—‘>
dx a7,

+010:(2¢e— |AE])

de on
(GG o
aT aT
where as above we let E;=¢, and E;=AE+e¢;
but now with the difference, AE=— | AE|.

We now proceed with the calculations of the
average energies, concentration of carriers n,
etc., in degenerate statistics. The average energy
of an electron or hole may be obtained in a
power series expansion in powers of (RT/Ey)
from the expression of the internal energy of
electrons

U
—=e=kTTFy(E;/kT),/Fy(E;/k1)7 (see Ref. 18),
n

where the function F.(E,;/kT) is defined by the
integral

Fu(n) = / Lexp (v —m) 4+ 1] *xkdx.

These functions and their power-series expansions
are discussed by McDougall and Stoner,”? and
Wilson.? Expressions for n and ("'#/47T) are
18 See Ref. 16, p. 147, Eq. 623.1.
1 ], McDougall and E. C. Stoner, Phil. Trans. Roy. Soc.

London A237, 67 (1938), Eq. 5.1.
® See Ref. 16, p. 332, Eq. A41.6.
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obtained from their dependence on 7" in intrinsic
semiconductors and semimetals:

n=4r(2mkT/h2) F,(E;/kT) (see Ref. 21).

1f we make a power-series expansion of the
functions F,(n) for the condition E;/kT=n>1
for €, (9¢/dT), n~1(3n/971), etc., we obtain the
following expressions,

3
=<g>kT<n+w22—ln~l+- o

-Gy
-0 << v

47 Ty

(Qrone-
N]

3
(_)4 e (1wt ).
d

(20)

§

I

/‘\/\/\/\
o
1_/
Il

e
)
-G

If we substitute Eq. 20 in Eq. 19, omit all
common numerical constants in the expansions

of Eq. 20, and drop all terms of order higher than
7L, we get,

/

VAR
I‘Vz<7<—*> =
ax
(21)

Making the substitution |AE|=2F;=29k1 in
Eq. 21 we find that the ambipolar term reduces
to zero, leaving us with the individual contribu-
tion of the electrons and holes to the heat
conductivity,

—2e2[ (o1 F02)°k2 T
+0’102<6k2T"3 1 AE{kn_l)]

W (0T /ox)" = —2e2k2T (a1 +02)2  (22)

This result, obtained on the basis of a very
simple model, agrees within the assumptions
made, with the exact calculations of Madelung,?
and Dannhduser.?? They show the ambipolar

2 See Ref. 11, p. 79.
2 See Ref. 7, p. 88.
% 12, Dannhiuser. Z. Phvsik 166, 519 (1962), Eq. 14.

0
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contribution for a semimetal (negative energy
gap) to be extremely small and to be of order
772 and higher.

III. CONCLUSIONS -
The interpretation of the results for the
classical case present no difficultics.?* The

temperature gradient in the semiconductor and
its concommitant density gradient produce a
flow of carriers. If there is to be no net current
flow, (j.=0), an electric ficld must be set up
to oppose the flow of carriers. This field changes
the individual flows of the holes and electrons if
their mobilities arc not equal such that the net
current becomes zero (we assume here equal
number of clectrons and holes). Despite zero
net-current flow the net-energy flow does not
reduce to zero, because the average energy of the
carriers drifting along the temperature-density
gradient is greater than that of the carriers
drifting back under the influence of the retarding
field &,.. If we assume for simplicity’s sake that
both carriers have the same mobility, (7, again
being equal to my), the individual currents
exactly compensate cach other, and the boundary
condition of no net current is met without a
compensating field &,. In other words the carriers
drift under the sole influence of the combined
temperature density gradients. Eq. 14 shows
quite clearly that §,reduces to zero if niuy = 1aps.28
We can make an estimate of the encergy trans-
ported under these conditions by making use of
the average drift velocity of the carriers, which
are easily obtained from Eq. 6 and 7. The drift
velocity, iy, due to the temperature gradient is
equal to D!'(d7/dx), and the drift velocity, #,,
due to the density gradient is D(dn/dx). The
energy to create an electron hole pair, the
“Yonization energy,”2 is £, +Es= |AE| + €1+ eo.
Therefore, the rate at which energy drifts down
the temperature-density gradient with a pair is
(E1+E2) (u,4u,). It is now easily verified with
Eqgs. 6 and 7, and the expression?® for (9n/87T),
that the above expression for the rate of energy
transport is indeed the ambipolar contribution to
the thermal conductivity.?” Thus the origin of the

% See Ref. 23, p. 527.

2% Note that according to our definition

= —(u2/ | p2]).
26 See Sec. 2.
27 Compare with Refs, 13 and 28, p. 9.

(#1/(#1{)
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various terms in the expression for the ambipolar
term in Eq. 18 are easily accounted for. At first
thought, one would expect this contribution to be
linear in AE, but the term proportional to (ALK)?
can now be traced directly to that part of the
energy transport caused by the density gradient.
" The general arguments given in the preceding
paragraph concerning the drift of electron—hole
pairs under the influence of temperature and
density gradients is unaffected by the degree of
degeneracy of the carriers. Equation 16, which
describes the energy transport by electrons and
holes, is equally applicable to both classical and
degenerate carriers. However, in order to see
why the ambipolar contribution to the heat
conductivity for the latter is nonexistent (to a
first approximation), we have to draw on some
results of solid-state theory. These results are
actually implicit in the assumptions made in
Sec. 3. We assumed overlapping bands, and the
Fermi level midway between the itop of the
valence and the bottom of the conduction band.
Consequently all energy levels in both bands are
filled with electrons up to the Fermi level at
T'=0°K. But the unoccupied states in the
valence band between the top of the band and
the Fermi level (i.e., in the corners of the first
Brillouin zone of a simple cubic lattice, say)
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behave like holes.?® At elevated temperatures
clectrons in the conduction band and holes in
the valence band are excited into higher states.
We can now casily visualize a ‘free” electron
and a “free” hole which exist literally side by
side, i.e., occupy the same energy level, but in
different bands. Whereas in the classical case
electrons and holes were of necessity separated by
at least the ‘‘ionization energy,” AE, we find
that the above mentioned pair transports no
ionization energy. We can further imagine all
free electrons and holes in their respective bands
paired off in the fashion described. Thus on the
average there is no ambipolar contribution to
the heat conductivity. We also note that if we
take the average total energy of an electron
hole pair, E1+E:=AE+e+e, let ei=ea= | AE]
.2, and put AE=— AE!, E;+E, reduces to
zero. This physical picture of the ambipolar
effect in semimetals does seem to be a fairly
accurate one, since the exact results® show the
cffect to be smaller by a factor ofn™2=(1,100)
than the straightforward electron and hole
conduction.

28 I M. Ziman, “Electrons in Metals” in A Short Guide
to the Fermi Surfuce (Taylor and Francis Ltd., London,
1962), p. 37.

2 See Ref. 23,



